Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 521-527, 2023.
Article in Chinese | WPRIM | ID: wpr-992127

ABSTRACT

Objective:To investigate the possible role and mechanism of purinergic ligand-gated ion channel 7(P2X7)/nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3) inflammasome pathway in cognitive impairment induced by sleep deprivation (SD)mice.Methods:SPF grade male C57BL / 6J mice aged 6-8 weeks were randomly divided into 3 groups according to the random number table method with 6 mice in each group.They were normal control group (CC group), SD group and SD+ P2X7 receptor antagonist brilliant blue G(BBG) group (SD+ BBG group). Modified multiple platform method was used to establish a 5-day SD model in mice.During the SD intervention period, the mice in SD+ BBG group were injected with BBG(50 mg/kg) intraperitoneally once a day, while the mice in CC group and SD group were injected with the same volume of 0.9% sodium chloride solution.Morris water maze was conducted to evaluate the cognitive function of mice.The protein expression levels of P2X7, NLRP3, caspase-1, apoptosis-associated proteins(ASC) and interleukin-1β(IL-1β) in hippocampus were detected by Western blot.RT-qPCR was used to detect the mRNA expression levels of tumor necrosis factor-α(TNF-α), IL-1β, interleukin-18(IL-18) and microglial polarization surface markers CD206 and CD86 in hippocampus.Graph pad Prism 8.0 software and SPSS 25.0 software were used for statistical analysis and mapping.Results:(1) The interaction effect between time and groups of escape latency in three groups of mice was significant ( F=15.76, P<0.001). From the 2nd to 5th day, the escape latencies of mice in SD group were higher than those of CC group, while the escape latencies of mice in SD+ BBG group were lower than those of SD group (all P<0.05). (2)The results of the space exploration experiment showed that there were statistically significant differences in target quadrant residence time and the times of crossing the platform( F=6.65, P=0.009; F=12.39, P<0.001). The target quadrant residence time ((23.42±0.55) s) and times of crossing the platform ((17.67±0.71) times) of the SD group were both lower than those of the CC group ((29.48±1.78) s, (23.33±0.95) times) (both P<0.05), while the target quadrant residence time ((28.62±1.19) s) and the times of crossing the platforms ((21.33±0.76) times) of the SD+ BBG group were both higher than those of the SD group (both P<0.05). (3)There were statistically significant differences in the protein levels of inflammatory related proteins such as P2X7, NLRP3, caspase-1, ASC and IL-1β in the hippocampus of mice among the 3 groups( F=8.23, 8.97, 8.45, 54.42, 8.12, all P<0.05). Compared with CC group, the protein levels of P2X7 ((0.93±0.02), (0.71±0.04)), NLRP3 ((0.97±0.04), (0.62±0.09)), caspase-1 ((1.00±0.03), (0.76±0.07)), ASC ((0.96±0.02), (0.77±0.04)) and IL-1β ((0.85±0.07), (0.54±0.04)) in SD group were all higher (all P<0.05). Compared with SD group, the protein levels of P2X7 (0.74±0.05), NLRP3 (0.78±0.02), caspase-1 (0.74±0.04), ASC (0.67±0.02), IL-1β (0.53±0.07) in SD+ BBG group were all lower (all P<0.05). (4)There were statistically significant differences in the mRNA levels of IL-18, IL-1β, TNF-α, CD86 and CD206 in hippocampus among the three groups ( F=12.80, 12.28, 105.80, 7.06, 30.19, all P<0.05). The mRNA levels of IL-18, IL-1β, TNF-α, CD86 in SD group were all higher than those in CC group(all P<0.05), while the mRNA level of CD206 in SD group was lower than that in CC group( P<0.05). Compared with SD group, the mRNA levels of IL-18, IL-1β, TNF-α, CD86 were lower in SD+ BBG group (all P<0.05), while the CD206 mRNA level of SD+ BBG group was higher than that in SD group( P<0.05). Conclusion:SD intervention can lead to cognitive impairment and increased expression of P2X7 in hippocampus of mice, which may be related to the activation of P2X7/ NLRP3 inflammasome signaling pathway, promoting the polarization of microglia into pro-inflammatory type and up-regulating the expression of pro-inflammatory cytokines.Inhibition of P2X7 can improve the cognitive function of mice.

2.
Acta Pharmaceutica Sinica ; (12): 2669-2676, 2023.
Article in Chinese | WPRIM | ID: wpr-999004

ABSTRACT

This study investigated the protective effect of chrysin on hepatic fibrosis by regulating AMP-activated kinase (AMPK)-NOD-like receptor protein 3 (NLRP3) mediated pyroptosis pathway. The hepatic fibrosis model of mice was established by thioacetamide (TAA) in vivo. Except the control and chrysin alone groups, the mice were injected intraperitoneally with TAA at 100 mg·kg-1, three times per week for the first week. From the 2nd to 5th week, mice were injected intraperitoneally with TAA at 200 mg·kg-1, three times per week for the next 4 weeks. Chrysin groups were intragastrically administrated once per day to 5th week. The histopathological changes were detected by HE and Masson staining. The levels of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were assessed by the kits. All animal experiments were approved by the Medical Ethics Committee of Affiliated Zhongshan Hospital of Dalian University (DWLL2019060). LX-2 cells were stimulated by (transforming growth factor-β, TGF-β) in vitro. The protein expressions of AMPKα, p-AMPKα, NLRP3, cysteinyl aspartate specific proteinase-1 (caspase-1), gasdermin D (GSDMD) were detected by Western blot, and the mRNA levels of collagen-Ι, α-smooth muscle actin (α-SMA), interleukin-1β (IL-1β), IL-18, caspase-1, GSDMD were analysis by reverse transcription-polymerase chain reaction (RT-PCR). Chrysin attenuated the increases in serum AST and ALT levels in the TAA group, while significantly improved the changes of liver morphology, reduced liver tissue inflammatory cell infiltration and inhibited collagens deposition. Compared with TAA group, chrysin effectively activated AMPKα phosphorylation and inhibited hepatic NLRP3 inflammasome activation. Additionally, the protein expressions and mRNA levels of IL-1β, IL-18, caspase-1 and GSDMD in chrysin groups were decreased. Chrysin inhibited the expressions of collagen-Ι and α-SMA, enhanced the phosphorylation of AMPKα, and decreased the expressions of NLRP3 and GSDMD. Therefore, chrysin may inhibit inflammatory injury and pyroptosis possibly by activating AMPK and inhibiting NLRP3 inflammasome to alleviate hepatic fibrosis.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 56-63, 2023.
Article in Chinese | WPRIM | ID: wpr-997657

ABSTRACT

ObjectiveTo investigate the mechanism of Jiedu Huoxue prescription in promoting the reendothelialization of injured vessels by regulating the nuclear factor (NF)-κB/NOD-like receptor protein 3 (NLRP3)/cysteine-aspartic acid protease (Caspase)-1-mediated pyroptosis. MethodA rat model of injured thoracic aorta was established by balloon injury, and 36 rats were assigned into shame surgery, model, low-, medium-, and high-dose Jiedu Huoxue prescription, and atorvastatin calcium tablet groups. The injured aortic segment was collected 28 days after surgery. Hematoxylin-eosin (HE) staining and Evans blue staining were conducted to reveal the changes of vascular structural morphology and the reendothelialization of blood vessels, respectively. The enzyme-linked immunosorbent assay (ELISA) was employed to determine the levels of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-1β, and nitric oxide (NO) in the serum. Western blotting was employed to determine the expression of endothelial nitric oxide synthase (eNOS), NF-κB p65, phospho-NF-κB p65 (p-NF-κB p65), NLRP3, and Caspase-1 in the vascular tissue. ResultThe model group showed thickened endovascular membrane, proliferation and disarrangement of smooth muscle cells of the artery wall, obvious inflammatory cell infiltration, and narrowed luminal area. Jiedu Huoxue prescription and atorvastatin calcium tablets mitigated the pathological changes of the thoracic aorta in different degrees. After balloon injury, the endothelial coverage rate of the model group decreased significantly, while Jiedu Huoxue prescription and atorvastatin calcium tablets increased the reendothelialization rate (P<0.05). Compared with the shame surgery group, the model group showed elevated levels of TNF-α, ICAM-1, and IL-1β (P<0.01) and lowered NO level (P<0.01) in the serum. In addition, the model group presented down-regulated protein level of eNOS (P<0.01) and up-regulated phosphorylation of pyroptosis-associated proteins NLPR3, Caspase-1, and NF-κB p65 in the vascular tissue (P<0.05, P<0.01). Compared with the model group, Jiedu Huoxue prescription and atorvastatin calcium tablets lowered TNF-α, ICAM-1, and IL-1β levels (P<0.05, P<0.01) and elevated the NO level in the serum (P<0.05, P<0.01). Moreover, the drugs up-regulated the expression of eNOS (P<0.01) and down-regulated the expression of NLRP3, Caspase-1, and NF-κB p65 (P<0.05, P<0.01) in the vascular tissue. ConclusionJiedu Huoxue prescription can promote the reendothelialization and inhibit the intimal hyperplasia of vessels after balloon injury by regulating the NF-κB/NLRP3/Caspase-1 pathway to inhibit pyroptosis and reduce endothelial inflammatory injury.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-7, 2023.
Article in Chinese | WPRIM | ID: wpr-997651

ABSTRACT

ObjectiveTo observe the effect of Huanglian Jiedutang on the inflammatory injury in the mouse model of acute gouty arthritis (AGA) and to explore the mechanism of Huanglian Jiedutang in treating AGA. MethodForty male C57BL/6J mice were randomized into blank, model, colchicine (0.83 mg·kg-1), and Huanglian Jiedutang (5 g·kg-1) groups. The mouse model of AGA was established by injecting monosodium urate (MSU) crystals into the ankle joint. The swelling degree of the right ankle joint of each mouse was measured every day for 7 days, and the pathological changes of the ankle joint were detected by hematoxylin-eosin (HE) staining after 7 days. The other 40 C57BL/6J mice were grouped as above. After 18 hours of modeling, the right ankle joint was collected, and real-time polymerase chain reaction was employed to measure the mRNA levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1. The expression levels of IL-1β, TNF-α, and IL-6 were measured by the enzyme-linked immunosorbent assay. Western blot was employed to determine the protein levels of NLRP3 inflammasome, Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB). ResultCompared with the blank group, the model group showed swelling right ankle joint (P<0.01), obvious foreign body granuloma in the ankle joint with inflammatory cell infiltration. After the treatment with Huanglian Jiedutang, the ankle joint swelling was relieved (P<0.05, P<0.01), and the size of foreign body granuloma was reduced. Compared with the blank group, the model group showed up-regulated mRNA levels of IL-1β, TNF-α, and IL-6 in the ankle joint tissue (P<0.01), up-regulated mRNA levels of NLRP3 and Caspase-1 in the NLRP3 inflammasome (P<0.05, P<0.01), and up-regulated protein levels of NLRP3, Caspase-1, TLR4, and NF-κB (P<0.05, P<0.01). Huanglian Jiedutang down-regulated the mRNA levels of IL-1β, TNF-α, IL-6, NLRP3, and Caspase-1 (P<0.05, P<0.01) and the protein levels of IL-1β, TNF-α, IL-6, NLRP3, Caspase-1, TLR4, and NF-κB (P<0.05 or P<0.01). ConclusionInjecting MSU crystal resulted in local inflammatory injury of the joints in the mouse model of AGA. The treatment with Huanglian Jiedutang may alleviate the inflammatory injury by regulating the NLRP3 inflammasome and TLR4/NF-κB signaling pathway.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 114-122, 2023.
Article in Chinese | WPRIM | ID: wpr-996511

ABSTRACT

ObjectiveTo explore the anti-tumor effect and mechanism of Shenqi Yiliu prescription in the intervention of pyroptosis. MethodTen male BALB/c mice were randomly selected and assigned to the blank group. The remaining 40 mice underwent the induction of the liver cancer xenograft model. After 5 days of modeling, 40 surviving mice were randomly divided into model group, cisplatin group [2.5×10-3 g·kg-1·(3 d)-1], Shenqi Yiliu prescription group (27 g·kg-1·d-1), and a combination group (Shenqi Yiliu prescription group + cisplatin). The mice in the blank group and the model group were treated with an equal volume of normal saline for 10 days. The general conditions of mice in each group were observed. After the intervention, the tumor weight of the mice was weighed and the tumor inhibition rate was calculated. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in tumor tissues. The levels of mouse liver function indicators, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay was used to detect DNA damage in mouse tumor tissue cells. Immunohistochemistry (IHC), immunofluorescence (IF), and Western blot were used to detect the protein expression levels of NOD-like receptor protein 3 (NLRP3), cysteinyl aspartate-specific protease-1 (Caspase-1), and gasdermin D (GSDMD) in tumor tissues. The levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in tumor tissues were detected by enzyme-linked immunosorbent assay (ELISA). ResultCompared with the mice in the blank group, those in the model group were in a poor mental state, sleepy, and lazy, and their fur color was dull, with increased levels of serum ALT and AST in liver function tests (P<0.01). Compared with the model group, the groups with drug intervention showed improved mental state, inhibited tumor growth to varying degrees, and decreased tumor weight, and the tumor inhibition rate in the combination group was the highest (P<0.01). HE staining showed that the pathological and morphological lesions of the tumor tissues in the model group were significant, while those in all groups with drug intervention were improved to a certain extent. The karyolysis and nuclear rupture in the Shenqi Yiliu prescription group and the combination group were more significant. In the liver function test, the serum ALT and AST levels of mice in the Shenqi Yiliu prescription group and the combination group decreased (P<0.01), and the inflammatory factors IL-1β and IL-18 in each group with drug intervention decreased (P<0.05, P<0.01). Among them, the declining trend of IL-1β and IL-18 in the Shenqi Yiliu prescription group was the most significant (P<0.01). TUNEL staining showed that the positive TUNEL staining in each group with drug intervention decreased after intervention (P<0.05, P<0.01), especially the cisplatin group and Shenqi Yiliu prescription group (P<0.01). Western blot, IHC, and IF found that the protein expression levels of NLRP3, Caspase-1, and GSDMD in each group with drug intervention decreased (P<0.05, P<0.01). Compared with the mice in the cisplatin group, those in the Shenqi Yiliu prescription group and the combination group had better mental state and regular tumor morphology, and the tumor weight of the mice in the combination group decreased (P<0.05). The levels of ALT and AST in the Shenqi Yiliu prescription group decreased (P<0.05), and the levels of IL-1β and IL-18 in the Shenqi Yiliu prescription group and the combination group decreased (P<0.05, P<0.01), especially in the combination group (P<0.01). The results of IHC showed that the expression of GSDMD protein in the tumor tissues of mice in the combination group was reduced (P<0.01). IF detection showed that the expression of NLRP3 in the tumor tissues of the Shenqi Yiliu prescription group was reduced (P<0.01). The results of Western blot showed that the expression level of NLRP3 protein in the Shenqi Yiliu prescription group and the combination group decreased (P<0.01), and the expression level of Caspase-1 protein in the combination group decreased (P<0.01). The decrease in GSDMD protein expression was not significant, and the difference was not statistically significant. ConclusionShenqi Yiliu prescription combined with cisplatin has an obvious anti-tumor effect, which may be achieved by down-regulating the NLRP3/Caspase-1/GSDMD inflammatory pyroptosis pathway to inhibit cell pyroptosis, and relieve the inflammatory response in mice with liver cancer.

6.
Chinese Journal of Microbiology and Immunology ; (12): 130-136, 2023.
Article in Chinese | WPRIM | ID: wpr-995265

ABSTRACT

Objective:To investigate whether salidroside (SAL) improves lung tissue injury in rats with severe pneumonia (SP) through mediating toll-like receptor 4/nuclear transcription factor-κB/NOD-like receptor protein 3 (TLR4/NF-κB/NLRP3) signaling pathway.Methods:Seventy-five Wistar rats were used in this study. Fifteen of them were randomly selected as the sham operation group, and the others were induced by endotracheal infusion of Klebsiella pneumoniae ( Kp) suspension to construct a rat model of SP. After modeling, the rats were randomly divided into four groups with 15 rats in each group: model group, low-dose SAL group (30 mg/kg), high-dose SAL group (60 mg/kg) and dexamethasone (DXMS, 15 mg/kg) group. The sham operation group and the model group were given the same amount of normal saline for seven consecutive days. The wet-dry weight ratio (W/D) of lung tissues in each group was detected. HE and TUNEL staining methods were used to observe the morphology of lung tissues and cell apoptosis. The levels of TNF-α, IL-1β, IL-6, IL-18 and IL-10 in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The expression of TLR4, myeloid differentiation factor (MyD88), NF-κBp65, phosphorylated NF-κBp65 (p-NF-κBp65) and NLRP3 at protein level in lung tissues was detected by Western blot. Results:The rat model of SP was successfully constructed by endotracheal infusion of Kp suspension. Compared with the sham operation group, the model group showed more severe edema of lung tissues, increased W/D value ( P<0.05), loose and incomplete alveolar structure, edema of alveolar wall and thickened alveolar wall, massive inflammatory cell infiltration, increased apoptosis rate as well as higher levels of TNF-α, IL-1β, IL-6 and IL-18 and lower lover of IL-10 in BALF. Moreover, the relative expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues was increased in the model group ( P<0.05). Gradually improved pathological injury of lung tissues, decreased W/D value ( P<0.05), recovered alveolar structure, reduced alveolar wall edema and decreased cell apoptosis rate were observed in the low-dose and high-dose SAL groups as well as the DXMS group as compared with those of the model group. Besides, the three groups also showed decreased levels of TNF-α, IL-1β, IL-6 and IL-18 and increased level of IL-10 in BALF, and inhibited expression of TLR4, MyD88, NF-κBp65, p-NF-κBp65 and NLRP3 at protein level in lung tissues ( P<0.05). DXMS performed better in improving lung injury in rats with SP, followed by high and low doses of SAL ( P<0.05). Conclusions:SAL could reduce cell apoptosis and improve the Kp-induced lung injury in rats. The mechanism might be related to the blockage of TLR4/NF-κB/NLRP3 signaling pathway activation and inhibition of inflammatory factor expression.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 241-250, 2023.
Article in Chinese | WPRIM | ID: wpr-980194

ABSTRACT

Nucleotide binding oligomeric dome-like receptor protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex, and it is an important player in the innate immune system, capable of sensing foreign pathogens and endogenous danger signals. After tissue injury, the activation of the NLRP3 inflammasome induces the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, while promoting gasdermin D-mediated pyroptosis. Existing studies have shown that NLRP3 inflammasome plays a key role in the occurrence and development of common bone and joint diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, and gouty arthritis by inducing inflammatory cascade reaction and accelerating bone resorption and cartilage destruction. Therefore, blocking the NLRP3 inflammasome signaling pathway may be an effective strategy to treat or prevent bone and joint diseases. Currently, researchers have developed and tested several drugs that selectively target the NLRP3 inflammasome in animal and clinical studies, but the progress has been poor due to obvious side effects and high prices. Traditional Chinese medicine (TCM) has been widely recognized in the treatment of bone and joint diseases due to its unique advantages of multi-target, multi-pathway, multi-mechanism synergism, low price, and low side effects. With the deepening of research, the targeted intervention of NLRP3 inflammasome by TCM in the treatment of bone and joint diseases has attracted wide attention. In this paper, the mechanism of NLRP3 inflammasome in osteoarthritis was summarized by analyzing relevant literature in China and abroad in recent years, and the progress of targeted intervention of NLRP3 inflammasome by TCM in the treatment of bone and joint diseases was systematically reviewed, so as to provide new ideas and theoretical basis for the treatment of bone and joint diseases.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 267-273, 2023.
Article in Chinese | WPRIM | ID: wpr-979473

ABSTRACT

Chronic atrophic gastritis (CAG) is a common and intractable disease in the digestive system characterized by the reduction or disappearance of gastric mucosal glands. The intestinal metaplasia or dysplasia in CAG is called precancerous lesion, which greatly increases the risk of cancerization. Dysactivation of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammatory corpuscles can release a large number of inflammatory factors, induce inflammatory cascade reactions, and participate in the process of many diseases. As reported, the dysactivation of NLRP3 inflammatory corpuscles can cause long-term chronic inflammatory infiltration of gastric mucosa and induce the development of CAG. Mitochondrial dysfunction plays an important role in the activation of NLRP3 inflammatory corpuscles. The accumulation of reactive oxygen species (ROS) produced by mitochondrial dysfunction is the key to activating NLRP3 inflammatory corpuscles. Professor LIU Youzhang put forward the theory of "spleen-mitochondrion correlation", which holds that the spleen mainly transports water and grains, generates qi and blood, transports nutrients to the whole body, and supplies energy and materials needed by the body. Adenosine triphosphate (ATP) generated by mitochondria through the circulation of tricarboxylic acid is the main energy source of the human body. The view that both of them serve as human energy processing plants coincides in terms of physiology. Pathologically, spleen deficiency is associated with mitochondrial oxidative phosphorylation dysfunction. Pathological products such as dampness, turbidity, phlegm, and blood stasis due to failure in transportation because of spleen deficiency are consistent with metabolites generated by mitochondrial dysfunction. Based on the theory of "spleen-mitochondrion correlation", this study discussed the pathogenesis of CAG in traditional Chinese medicine (TCM), analyzed the relationship between NLRP3 inflammatory corpuscles and the pathogenesis of CAG, and proposed that the activation of NLRP3 inflammatory corpuscles by mitochondrial dysfunction was the modern biological basis of the pathogenesis of spleen deficiency in CAG. The spleen-strengthening method may be related to improving the mitochondrial function and inflammatory response of patients with CAG and alleviating the damage of gastric mucosa, providing a new idea for TCM in the prevention and treatment of CAG.

9.
International Eye Science ; (12): 1317-1322, 2023.
Article in Chinese | WPRIM | ID: wpr-978626

ABSTRACT

Diabetic retinopathy(DR)is a neurovascular disease caused by the neurovascular unit(NVU)impairment. Immune imbalance and inflammation are key factors that affect the normal function of NVU and lead to the progression of DR. Nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome is indicated as an important component of the inflammatory response, and it can identify endogenous danger signals, leading to the activation of caspase-1 and then activating a series of inflammatory cytokines and pyroptosis. Early activation of inflammasome maintains and promotes innate immunity against bacterial and viral infections, while excessive inflammasome activation results in excessive expression and ongoing action of inflammatory proteins, which in turn triggers off immune disorders and an inflammatory cascade that seriously harms the body. This review summarizes the recent research progress on the mechanism of NLRP3 inflammasome in NVU impairment of DR, including the related drugs targeting NLRP3 pathways.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 250-263, 2023.
Article in Chinese | WPRIM | ID: wpr-978471

ABSTRACT

Diabetic cardiomyopathy (DCM) is one of the complications of diabetes. It refers to a specific type of idiopathic cardiomyopathy that occurs in individuals with diabetes, distinct from other cardiovascular diseases such as coronary heart disease, valvular heart disease, or congenital heart disease. It has also been identified as one of the leading causes of death in diabetic patients for many years. Research has shown that the pathogenesis of DCM is closely associated with insulin resistance, activation of various inflammatory responses, increased oxidative stress, impaired coronary microcirculation, and accumulation of advanced glycation end products (AGEs). Among various inflammatory responses, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome can induce the secretion of a large amount of pro-inflammatory cytokines through the cascade reaction of inflammation, subsequently mediating cellular pyroptosis and promoting myocardial damage. Currently, extensive experimental studies on traditional Chinese medicine (TCM) have been conducted in China and abroad based on the significant role of the NLRP3 inflammasome in the prevention and treatment of DCM. These studies have demonstrated that Chinese medicinal extracts, such as Astragalus polysaccharide and ginsenoside Rb1, single drugs like Coriolus and Cordyceps, and Chinese medicinal formulas like Didangtang and modified Taohe Chengqitang, as well as acupuncture and TCM exercise therapy, can regulate the relevant pathways of the NLRP3 inflammasome to inhibit its assembly or activation, reduce inflammatory responses, inhibit myocardial remodeling in DCM, and improve cardiac function. This article reviewed the relationship between the NLRP3 inflammasome and DCM, as well as the research progress on TCM in exerting anti-inflammatory effects in this field, aiming to provide new insights for the development of therapeutic approaches for DCM.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 154-161, 2023.
Article in Chinese | WPRIM | ID: wpr-978461

ABSTRACT

ObjectiveTo explore the effect of Jianpi Yichang power on the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome signaling pathway in a rat model of ulcerative colitis (UC). MethodSixty Sprague-Dawley rats were randomly divided into a normal group (n=10) and an experimental group (n=50). The experimental group received 5% dextran sulfate sodium (DSS) solution freely for 7 days to induce UC, and then they were further randomly divided into model group, sulfasalazine (0.3 g·kg-1) group, and high-, medium-, and low-dose Jianpi Yichang power groups (54.4, 27.2, 13.6 g·kg-1) for continuous treatment of 14 days. The general condition of the rats was observed and recorded daily, and the disease activity index (DAI) was scored before and after treatment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the serum of rats in each group. Hematoxylin-eosin (HE) staining was performed to observe the histopathological changes in the colon tissue. Immunohistochemistry, Western blot, and Real-time polymerase chain reaction (Real-time PCR) were used to detect the positive protein expression, protein expression, and mRNA expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cysteine aspartate-special proteases-1(Caspase-1) in the colon tissue. ResultCompared with the condition in the normal group, the general condition of rats in the model group was relatively poor, with increased DAI scores (P<0.01), pathological changes in the colon, increased levels of IL-1β and IL-18 in the serum (P<0.01), and enhanced positive protein expression, protein expression, and mRNA expression of NLRP3, ASC, and Caspase-1 in the colon tissue (P<0.01). Compared with the condition in the model group, the general condition of rats in the Jianpi Yichang power groups at various doses improved significantly, with reduced DAI scores (P<0.05, P<0.01), alleviated pathological changes in the colon as revealed by HE staining, and reduced protein expression levels of NLRP3 and Caspase-1 in the colon tissue (P<0.05, P<0.01). The serum levels of IL-1β and IL-18, and ASC protein expression in the colon, as well as the mRNA expression levels of NLRP3, ASC, and Caspase-1, decreased in the high- and medium-dose Jianpi Yichang power groups (P<0.05, P<0.01). The positive protein expression levels of NLRP3, ASC, and Caspase-1 were reduced in the high-dose Jianpi Yichang power group (P<0.01). The positive protein expression levels of ASC and Caspase-1 were reduced in the medium-dose Jianpi Yichang power group (P<0.05). The mRNA expression level of ASC was reduced in the low-dose Jianpi Yichang power group (P<0.05). ConclusionJianpi Yichang power can reduce colon immune inflammatory damage by regulating the NLRP3 inflammasome signaling pathway, thereby exerting a role in treating UC.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 12-21, 2023.
Article in Chinese | WPRIM | ID: wpr-978446

ABSTRACT

ObjectiveTo investigate the molecular mechanism of the anti-inflammatory effect of Erchentang in the lung tissue of the rat model of chronic obstructive pulmonary disease (COPD) via the heparin-binding factor (Midkine)/transmembrane receptor protein (Notch2)/Hey1 signaling pathway. MethodSixty SD rats were randomized into normal group, model group, modified Erchentang (5, 10, 20 g·kg-1·d-1) groups, and Notch1 pathway inhibitor (γ-secretase inhibitor, DAPT, 0.02 g·kg-1) group, with 10 rats in each group. The rat model of COPD was established by cigarette smoke combined with lipopolysaccharide (LPS). After the modeling, the rats were administrated with corresponding drugs by gavage, and those in the normal and model groups were administrated with normal saline by gavage for 21 days. The levels of Midkine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage-derived chemokine (MDC), chemokine ligand 5 (CXCL5), neutrophil elastase (NE), and nuclear factor-kappa B (NF-κB) p65 in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and immunohistochemistry were respectively employed to determine the mRNA and protein levels of Midkine, Notch2, and Hey1 in the lung tissue. ResultCompared with the normal group, the modeling increased the levels of Midkine, CINC-1, MDC, CXCL5, NE, and NF-κB p65 in BALF (P<0.01) and up-regulated the mRNA and protein levels of Midkine, Notch2, and Hey1 in the lung tissue (P<0.01). Compared with the model group, medium- and high-dose modified Erchentang and DAPT lowered the levels of Midkine, CINC-1, MDC, CXCL5, and NF-κB p65 in BALF (P<0.01) and down-regulated the mRNA levels of Midkine, Notch2, and Hey1 (P<0.01). ConclusionModified Erchentang may inhibit the inflammation in COPD rats by down-regulating the expression of Midkine, Notch2, and Hey1 and reducing the content of Midkine, CINC-1, MDC, and CXCL5.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 212-220, 2023.
Article in Chinese | WPRIM | ID: wpr-976556

ABSTRACT

Pyroptosis, a new type of inflammatory programmed cell death, is different from apoptosis, necrosis, cytosis, ferroptosis, and autophagy. Pyroptosis is dependent on the activation of cysteine aspartate-specific protease (Caspase), which cleaves key mediator proteins to form pores in the cell membrane and induces the maturation and release of the proinflammatory cytokines interleukin-1β and interleukin-18 into the extracellular environment, resulting in a cascade of inflammatory reactions. Gastric cancer as a malignant tumor of the digestive tract is refractory and has poor prognosis, and the chemoradiotherapy of this disease may lead to a variety of complications. At present, the pathogenesis of gastric cancer remains unclear. Studies have proved that pyroptosis is associated with the occurrence and development of gastric cancer, which has attracted wide attention. Pyroptosis is a double-edged sword for gastric cancer. On the one hand, it can release the contents of proinflammatory cells to amplify or maintain inflammation and induce the "inflammation-cancer" transformation of cells. On the other hand, pyroptosis can enhance the sensitivity of drugs for chemotherapy to improve the therapeutic effect and survival. In recent years, the anti-tumor mechanism of traditional Chinese medicine (TCM) has become a research hotspot as TCM has demonstrated significant effects in clinical application. Therefore, the regulation of pyroptosis by TCM may be a new direction for the treatment of gastric cancer in the future. Based on the available studies, this paper introduces the roles of pyroptosis-associated key proteins in the occurrence and development of gastric cancer. Furthermore, this paper summarizes the effects of TCM prescriptions and active ingredients on alleviating gastric mucosal damage, reducing the incidence of gastric cancer, and preventing tumor metastasis and recurrence by mediating pyroptosis pathways, aiming to provide new ideas for deciphering the mechanism of pyroptosis and exploring the TCM treatment of gastric cancer in the future.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 51-59, 2023.
Article in Chinese | WPRIM | ID: wpr-976539

ABSTRACT

ObjectiveTo investigate the therapeutic effect of Lycopi Herba extract on chronic prostatitis (CNP) and explore the underlying action mechanism via the inflammasome NOD-like receptor protein 3 (NLRP3) pathway. MethodNormal human prostatic stromal cells, namely WPMY-1 were induced by lipopolysaccharide (LPS) of 5 mg·L-1, and the effects of Lycopi Herba extract of 3.125, 6.25, 12.5, 25, 50, and 100 mg·L-1 on interleukin-6 (IL-6) level released by LPS-induced WPMY-1 cells were detected by enzyme-linked immunosorbent assay (ELISA). The half-maximal inhibitory concentration (IC50) was calculated. The expression of key proteins in the NLRP3 pathway was detected by western blot after Lycopi Herba extract of 50, 75, and 100 mg·L-1 was administered to WPMY-1 cells. The rat model of CNP was established by injecting carrageenan salt solution into the abdominal lobe of the prostate gland. Hematoxylin-eosin (HE) staining was used to observe the histopathological changes in the prostate gland in rats. The prostate organ index of rats was measured. The level of 5α-dihydrotestosterone (5α-DHT) in serum, as well as the levels of IL-6, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) in prostate tissue were detected by ELISA. The key protein expressions of COX-2, TGF-β1, and NLRP3 pathway in prostate tissue were detected by Western blot. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the expressions of COX-2, IL-1β, TGF-β1, and TNF-α mRNA in prostate tissue. ResultCompared with the normal group, the level of IL-6 and the protein expression levels of NLRP3, ASC, Caspase-1, and IL-1β of WPMY-1 cells in the model group were increased (P<0.05, P<0.01). Compared with the model group, Lycopi Herba extract could inhibit the levels of IL-6 (P<0.01) released by LPS-induced WPMY-1 cells, with IC50 of 38.26 mg·L-1. The protein expression levels of NLRP3, ASC, and IL-1β in the low-, medium-, and high-dose groups of Lycopi Herba extract were significantly down-regulated (P<0.05, P<0.01). The expression levels of Caspase-1 protein in medium- and high-dose groups of Lycopi Herba extract were significantly down-regulated (P<0.05, P<0.01). Compared with the sham operation group, the prostate organ index of rats in the model group was significantly increased (P<0.01), a large number of inflammatory cells were infiltrated in the prostate tissue, and the histopathological score was significantly increased (P<0.05); the levels of 5α-DHT in serum, the levels of TNF-α, PGE2, IL-6, TGF-β1, NOS2/iNOS, and COX-2 in prostate tissue, and expression levels of COX-2, IL-1β, and TGF-β1 were significantly increased (P<0.05, P<0.01). The mRNA expression levels of COX-2, TGF-β1, NLRP3, Caspase-1, ASC, and IL-1β in prostate tissue were significantly up-regulated (P<0.05, P<0.01). Compared with model group, the low and high doses of Lycopi Herba extract could alleviate the pathological changes in prostate tissue induced by carrageenan, significantly reduce the level of 5α-DHT in serum, levels of TNF-α, PGE2, TGF-β1, and iNOS in prostate tissue (P<0.05, P<0.01), and mRNA expression levels of COX-2, IL-1β, and TGF-β1 (P<0.05, P<0.01). The protein expression levels of COX-2, Caspase-1, ASC, and NLRP3 in prostate tissue were significantly down-regulated (P<0.05, P<0.01). The prostate organ index of the low-dose group of Lycopi Herba extract was significantly decreased (P<0.01). The level of COX-2 in prostate tissue of the high-dose group of Lycopi Herba extract was significantly decreased, and the protein expression levels of TGF-β1 and IL-1β were significantly down-regulated (P<0.05). ConclusionLycopi Herba extract has an obvious therapeutic effect on CNP and may reduce inflammation by inhibiting the activation of the inflammasome NLRP3 signaling pathway.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 79-87, 2023.
Article in Chinese | WPRIM | ID: wpr-973748

ABSTRACT

ObjectiveTo explore the efficacy and mechanism of the alcohol extract DH50 of Angelicae Pubescentis Radix in treating gouty arthritis induced by monosodium urate (MSU) crystals in vivo and in vitro. MethodFifty male SD rats were randomly assigned into five groups (n=10): a normal group, a model group, a dexamethasone (DXMS, 0.07 mg·kg-1) group, and low- (DH50-D, 9 mg·kg-1) and high-dose (DH50-G, 18 mg·kg-1) DH50 groups. The rats in the normal group and model group were administrated with the same amount of pure water. On day 5, the gouty arthritis model was established by injecting MSU into the right ankle joint of rats. The toe volume and joint inflammation index were measured 4, 8, 24, and 48 h after modeling. The pathological changes of the synovial tissue were detected by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 in the synovial tissue. Western blot was employed to measure the protein levels of NOD-like receptor protein 3 (NLRP3), cysteine-aspartic protease-1 (Caspase-1), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), IL-1β, and cyclooxygenase-2 (COX-2) in the synovial tissue. Furthermore, the cell inflammation model was established with RAW264.7 cells stimulated with MSU (75 mg·L-1). The cell experiments were carried out with 6 groups: a normal group, a model group, a positive drug (DXMS, 100 μmol·L-1) group, and low- (DH50-D, 25 mg·L-1), medium- (DH50-Z, 50 mg·L-1), and high-dose (DH50-G, 100 mg·L-1) DH50 groups. Methyl thiazolyl tetrazolium (MTT) assay was employed to determine the cell viability, ELISA to determine the content of TNF-α in the supernatant of cell culture, and Western blot to determine the protein levels of NLRP3, cleaved Caspase-1, IL-1β, TNF-α, and COX-2. ResultCompared with the normal group, the rat model group showed increased toe swelling degree and joint inflammatory index (P<0.01), serious infiltration of the synovium, elevated levels of inflammatory cytokines in the tissue homogenate (P<0.01), and up-regulated protein levels of NLRP3, Caspase-1, ASC, IL-1β, and COX-2 (P<0.05, P<0.01). Compared with the rat model group, low- and high-dose DH50 mitigated the toe swelling degree, decreased the joint inflammatory index, alleviated the inflammatory infiltration, lowered the levels of inflammatory cytokines in the tissue homogenate (P<0.01), and down-regulated the expression of related proteins (P<0.05, P<0.01). Compared with the normal group, the cell model group showed elevated level of TNF-α in the supernatant (P<0.01) and up-regulated protein levels of NLRP3, cleaved Caspase-1, IL-1β, TNF-α, and COX-2 (P<0.05). Compared with the model group, low, medium, and high doses of DH50 lowered the level of TNF-α in the supernatant of cell culture in a dose-dependent manner and down-regulated the expression of related proteins (P<0.05, P<0.01). ConclusionDH50 can mitigate gouty arthritis both in vitro and in vivo by inhibiting the activation of NLRP3 inflammasomes and the production of inflammatory cytokines.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 97-105, 2023.
Article in Chinese | WPRIM | ID: wpr-972290

ABSTRACT

ObjectiveTo explore the mechanism of Dendrobium huoshanense polysaccharide (DHP) against inflammatory damage of neurons in Parkinson's disease (PD) model. MethodSH-SY5Y cells were randomized into blank group, model group, and DHP group. The survival rate of cells was measured by thiazole blue(MTT) assay, and the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured by colorimetric analysis. BV-2 microglia were classified into blank group, model group, DHP group, and MCC950 group (positive control group), and enzyme-linked immunosorbent assay (ELISA) was applied to detect the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18). The expression of NOD-like receptor protein 3 (NLRP3), adaptor protein apoptosis-associated dot protein (ASC), cysteine aspartic protease-1 (Caspase-1), and IL-1β was measured by Western blot. A total of 50 C57BL/6 mice were randomized into blank group, model group, DHP low-dose (100 mg·kg-1) group, DHP equivalent-dose (350 mg·kg-1) group, and MCC950 group (positive control group), 10 mice in each group. The motor balance and coordination of C57BL/6 mice were observed by beam walking test, tail suspension test and rotarod test. The levels of Iba-1 and tyrosine hydroxylase (TH) were detected by immunofluorescence staining. The damage of dopaminergic neurons in the substantia nigra was detected by FJB staining. The levels of inflammatory factors such as IL-1β, IL-18, and TNF-α in mouse midbrain tissues were detected by ELISA and the protein levels of NLRP3, ASC, Caspase-1, and IL-1β protein were measured by Western blot. ResultCompared with the blank group, the SH-SY5Y model group showed decreased cell survival, increased levels of LDH, ROS, and MDA (P<0.05), and decreased levels of SOD (P<0.05). Compared with the model group, the DHP group demonstrated increased cell survival, decreased levels of LDH, ROS, and MDA (P<0.01), and increased level of SOD (P<0.01). Compared with the blank group, BV-2 model group had high levels of IL-1β, IL-18, and TNF-α (P<0.05) and high protein expression of NLRP3, Caspase-1, IL-1β, and ASC (P<0.05). Compared with the model group, DHP and MCC950 groups demonstrated low levels of IL-1β, IL-18, and TNF-α (P<0.01) and low protein expression of NLRP3, Caspase-1, IL-1β, and ASC (P<0.01). Compared with the blank group, the C57BL/6 model group displayed long time to pass the balance wood (P<0.05), short time spent on the rod in the rotarod test (P<0.05), high levels of IL-1β, IL-18, and TNF-α (P<0.05) and expression of Iba-1 in the midbrain substantia nigra (P<0.05), low TH expression (P<0.05), more positive neurons in the FJB staining (P<0.05), and high expression of NLRP3, Caspase-1, ASC, and IL-1β proteins (P < 0.05). Compared with the model group, the mice in the DHP and MCC950 groups had short time to pass the balance beam (P<0.01), long time spent on the rod (P<0.01), low levels of IL-1β, IL-18, and TNF-α (P<0.01), low Iba-1 expression in midbrain substantia nigra (P<0.01), high TH expression (P<0.01), and small number of positive neurons in the midbrain substantia nigra (P<0.01). The expression of NLRP3, ASC, and IL-1β proteins was lower in the MCC950 group (P<0.01), and the expression of NLRP3, ASC, Caspase-1 and IL-1β proteins was lower in the DHP equivalent-dose group (P<0.01) than in the model group. ConclusionDHP has anti-oxidative stress effect. It regulates the expression of NLRP3 inflammasome and inhibits the overactivation of microglia, thereby alleviating the neuroinflammatory injury in PD and exerting the neuroprotective effect.

17.
Chinese Journal of Neonatology ; (6): 359-364, 2023.
Article in Chinese | WPRIM | ID: wpr-990764

ABSTRACT

Objective:To study the protective effects and mechanisms of melatonin (MTn) on lipopolysaccharide (LPS) and hypoxic-ischemic(HI) induced white matter damage (WMD) in neonatal rats.Methods:Seventy-two 3-day-old newborn Sprague-Dawley (SD) rats were randomly assigned into sham operation group (the sham group), model group (the HI group) and MTn intervention group (the HI+MTn group) ( n=24 for each group). For the sham group, only dissection of the right common carotid artery was performed without ligation. Animal models of WMD were established using LPS pretreatment and HI method in both the HI group and HI+MTn group. The HI+MTn group received MTn intraperitoneal injection (15 mg/kg, 1 h before LPS injection and then once daily). The HI group and the sham group received equal volume of normal saline containing 1% ethanol intraperitoneal injection. The rats were sacrificed on d7 of experiment and periventricular white matter (PVWM) was collected for hematoxylin-eosin (HE) and TUNEL staining to determine WMD and apoptosis. The distribution and morphology of microglial cells in the PVWM were studied using IBA1 immunofluorescence staining. Reactive oxygen species (ROS) kit was used to detect ROS. The expression of nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, interleukin (IL)-1β, IL-18 and mitochondrial autophagy markers (pink1 and parkin) were determined using real-time quantitative PCR. Results:Compared with the sham group, the HI group showed WMD, cell degeneration and necrosis,increased cell apoptosis and increased expressions of NLRP3 inflammasomes and downstream inflammatory factors (IL-1β and IL-18) in PVWM. Compared with the HI group,the HI+MTn group showed reduced WMD, cell apoptosis, microglia infiltration and inflammatory factors expression. MTn increased pink1 and parkin expression and reduced ROS production in PVWM.Conclusions:MTn reduces ROS production by enhancing mitochondrial autophagy and inhibits NLRP3 inflammasomes hyperactivation to alleviate endotoxin- and HI-induced WMD in neonatal rats.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 247-256, 2023.
Article in Chinese | WPRIM | ID: wpr-988203

ABSTRACT

Atherosclerosis is a chronic inflammatory disease caused by lipid accumulation and vascular endothelial dysfunction. The Toll-like receptor (TLR)/nuclear transcription factor-κB (NF-κB) pathway and the NOD-like receptor protein 3 (NLRP3) inflammasome pathway play a proinflammatory role, while the transient receptor potential vanilloid subtype 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) play a protective role in the occurrence of atherosclerosis. We reviewed the relevant studies published in the last 10 years. The results showed that activation of TRPV1/TRPA1 could activate endothelial-type nitric oxide synthase (eNOS) and inhibit the generation of reactive oxygen species (ROS) and cholesterol crystal (CC) to modulate the TLR/NF-κB and NLRP3 inflammasome pathways, thereby inhibiting TLR/NLRP3-mediated inflammatory response. A variety of compound prescriptions and active components of Chinese medicinal materials can activate TRPV1/TRPA1 or its downstream pathway to regulate the TLR/NLRP3 pathway in atherosclerosis. This paper introduces the mechanisms of compound prescriptions and active components of Chinese medicinal materials in regulating the TLR/NLRP3 pathway via TRPV1/TRPA1 in atherosclerosis. This review provides new ideas for the research on the interactions between Chinese medicines in the treatment of atherosclerosis and provides a new strategy for the clinical treatment of atherosclerosis with traditional Chinese medicine.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 274-282, 2023.
Article in Chinese | WPRIM | ID: wpr-965673

ABSTRACT

Ulcerative colitis (UC) mainly occurs in the colon and rectum, with complex pathological mechanism. The occurrence of ulcerative colitis is associated with the uncontrollable inflammatory response of the intestine. The Western medicine therapy of UC mainly uses glucocorticoids and immunosuppressants to reduce intestinal inflammation. While blocking the progress of UC to a certain extent, it causes severe adverse reactions. More and more studies have confirmed that traditional Chinese medicine (TCM) has obvious advantages in the prevention and treatment of UC and can significantly reduce the recurrence of the disease. Pyroptosis, a novel form of cell death, can destroy cell structure, release intracellular pro-inflammatory substances, and mediate intestinal immune response in UC. TCM can promote pyroptosis (removing excess) or inhibit pyroptosis (replenishing deficiency), which is consistent with the regulation of Yin and Yang. TCM plays a role in the treatment of UC mainly by inhibiting pyroptosis (replenishing deficiency) and reducing intestinal immune response. In recent years, a large number of studies have been carried out to decipher the mechanism of TCM in the treatment of UC via NOD-like receptor protein domain 3 (NLRP3)-mediated pyroptosis pathway. The results have demonstrated that NLRP3 pathway is the key target of TCM in the treatment of UC. However, a comprehensive summary remains to be carried out on the inhibition of NLRP3-mediated pyroptosis pathway by TCM in the treatment of UC. Therefore, we retrieved the articles in this field in recent years with the keywords "pyroptosis", "NLRP3", "ulcerative colitis", and "Chinese medicine". The Chinese medicines regulating NLRP3 pathway mainly have the functions of clearing heat and drying dampness, harmonizing Qi and blood, moving Qi and dredging fu-organs, and invigorating spleen and removing dampness. The findings can help researchers to fully understand the mechanism of TCM in the treatment of UC via the NLRP3 pathway and provide a theoretical basis for the treatment of UC and further drug development.

20.
Chinese Journal of Contemporary Pediatrics ; (12): 521-526, 2023.
Article in Chinese | WPRIM | ID: wpr-981988

ABSTRACT

OBJECTIVES@#To study the effect of procalcitonin (PCT) on lipopolysaccharide (LPS)-induced expression of the pyroptosis-related proteins nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 in human umbilical vein endothelial cells (HUVECs).@*METHODS@#HUVECs were induced by LPS to establish a model of sepsis-induced inflammatory endothelial cell injury. The experiment was divided into two parts. In the first part, HUVECs were randomly divided into four groups: normal control, LPS (1 μg/mL), PCT (10 ng/mL), and LPS+PCT (n=3 each). In the second part, HUVECs were randomly grouped: normal control, LPS, and LPS+PCT of different concentrations (0.1, 1, 10, and 100 ng/mL) (n=3 each). Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of NLRP3 and caspase-1 in each group.@*RESULTS@#In the first experiment: compared with the normal control group, the PCT, LPS, and LPS+PCT groups had significantly upregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05); compared with the LPS group, the LPS+PCT group had significantly downregulated mRNA and protein expression levels of NLRP3 and caspase-1 (P<0.05). In the second experiment: compared with those in the LPS group, the mRNA and protein expression levels of NLRP3 and caspase-1 in the LPS+PCT of different concentrations groups were significantly downregulated in a concentration-dependent manner (P<0.05).@*CONCLUSIONS@#LPS can promote the expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs, while PCT can inhibit the LPS-induced expression of the pyroptosis-related proteins NLRP3 and caspase-1 in HUVECs in a concentration-dependent manner.


Subject(s)
Humans , Caspase 1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Procalcitonin , Nucleotides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL